Collective Excitations in Exotic Nuclei

David Radford (ORNL) RIA Summer School, August 2002

I Nuclear Excitations: Single particle motion vs. Collective motion "Do nuclei really rotate?"

Collective Modes: Rotations and Vibrations

- Role of shapes and symmetries
- Particle-rotational couplings
- Shape oscillations; coupling to rotation
- II Experimental techniques and examples of results
 - Gamma-Ray Spectroscopy
 - Giant Resonances (high-frequency vibrations)
 - Intermediate-Energy Coulomb Excitation
- III Towards RIA: Experiments with n-rich beams at the HRIBF

We will start with *general principles,* then move to *specific examples.*

Have attempted to avoid jargon and formulas, and material covered by other lecturers.

Please interrupt at any time!

Superb reference: Bohr and Mottelson, <u>vol. 2</u> – "Nuclear Deformations" Publisher: W.A. Benjamin, Reading, MA 01867, 1975 The nucleus is one of nature's most interesting quantal few-body systems. It brings together many types of behavior, almost all of which are found individually in other systems but which, in nuclei, interact with one another.

The major elementary excitations in nuclei can be associated either with **single particle** or **collective** modes.

• **Single particle**: nucleons are assumed to move independently in an average potential; behavior is described, for example, within the framework of the nuclear shell model.

• **Collective**: close analogies to molecular and solid-state physics, and to familiar macroscopic systems (e.g. liquid drop.)

While these modes can exist in isolation, it is the *interaction between them* that gives nuclear spectroscopy its rich diversity.

Noncollective excitations

M.W. Drigert et al., Nucl. Phys. A515 (1990) 466

Octupole Vibrations

 $K = 0^{-1}$

Nucl. Phys. A600 (1996) 88

Coexistence of collective and noncollective motion

Why is it that the Independent Particle picture of nuclear motion works?

•Pauli Exclusion Principle

-gives nucleons essentially infinite mean free path.

But if the range of the nuclear force was 2 or 3 times larger, nuclei could have been *crystalline*...

Nuclear Physics A649 (1999) 45c

Why are nuclei described by independent particle motion ?

B.R. Mottelson^{a*}

 "The Niels Bohr Institute and NORDITA, Blegdamsvej 17, DK-2100 Copenhagen
 $\varnothing,$ Denmark

Constituents	M	$V_0 [eV]$	a [cm]	Λ	T=0 matter
³ He	3	9.10^{-4}	$2.9 \cdot 10^{-8}$	0.21	liquid
⁴ He	4	9.10^{-4}	$2.9 \cdot 10^{-8}$	0.16	liquid
H_2	2	3.10^{-3}	$3.3 \cdot 10^{-8}$	0.07	solid
Ne	20	3.10^{-3}	$3.1 \cdot 10^{-8}$	0.007	solid
nuclei	1	1.10 ⁸	9.10^{-14}	0.4	liquid

Table 1

The "quantality" parameter $\Lambda = \hbar^2/Ma^2V_0$ measures the strength of the two-body attraction, V_0 , expressed in units of the quantal kinetic energy associated with a localization of a constituent particle of mass M within the distance a corresponding to the radius of the force at maximum attraction. For small Λ the quantal effect is small and the ground state of the many body system will be, as in classical mechanics, a configuration in which each particle finds a static optimal position with respect to its nearest neighbors. If Λ is big enough the ground state may be a quantum liquid in which the individual particles are delocalized and the low-energy excitations (quasi-particles) have infinite mean free path. A parameter related to Λ was first used by de Boer in the analysis of quantal constants of the noble gas solids.

But the independent-particle shell model can also describe *rotational* structure:

VOLUME 87, NUMBER 14 PHYSICAL REVIEW LETTERS 1 OCTOBER 2001

Identification of the $I^{\pi} = 10^+$ Yrast Rotational State in ²⁴Mg

I. Wiedenhöver,^{1,*} A. H. Wuosmaa,¹ R. V. F. Janssens,¹ C. J. Lister,¹ M. P. Carpenter,¹ H. Amro,^{1,†} P. Bhattacharyya,² B. A. Brown,³ J. Caggiano,¹ M. Devlin,^{4,‡} A. Heinz,¹ F. G. Kondev,¹ T. Lauritsen,¹ D. G. Sarantites,⁴ S. Siem,^{1,‡} L. G. Sobotka,⁴ and A. Sonzogni¹

FIG. 5. Excitation energies of the ground state band in ²⁴Mg, with a rotational reference $E_{rot}[keV] = 187 \times I(I + 1)$ sub-tracted, compared with the results of a *sd*-shell model calculation with the USD Hamiltonian [13].

The shell model does very well at reproducing the energies of the superdeformed band in ³⁶Ar.

C. Svensson et al., Phys. Rev. Lett. 85 (2000) 2693

FIG. 2. Partial decay scheme for 36 Ar showing the superdeformed band (left). Transition and level energies are given to the nearest keV and arrow widths are proportional to transition intensities. The inset compares the experimental and shell model "backbending" plots for the SD band in 36 Ar, as well as experimental values for the ground band of 48 Cr [2–4].

The shell model can even reproduce the experimental B(E2) values for the superdeformed band in ³⁶Ar.

C. Svensson et al., Phys. Rev. C63 (2001) 061301

FIG. 5. $B(E2;I\rightarrow I-2)$ values for the SD band in ³⁶Ar compared with the results of cranked Nilsson-Strutinsky (dashed line) and $(s_{1/2}d_{3/2})^4(pf)^4$ shell model (solid line) calculations. The inner

Should we really talk about Collective Motion in nuclei?

- "Do nuclei rotate?"

Use concepts introduced by Jeff Tostevin yesterday: Adiabatic approximation:

- identify the fast and slow degrees of freedom.

Example: excited states of molecules. electronic motion - fastest vibrations - ~10² times slower rotations - ~10⁶ times slower The different motions have very different time scales, so the wavefunction (approximately) separates into products of terms.

Nuclei: Examine time scales for single-particle and collective motion.

1. Fermi Energy ~ 10 MeV

$$\frac{V_F}{c} = \sqrt{\frac{2E_F}{mc^2}} = 0.14$$

$$\Rightarrow V_F \sim 4x10^{22} \text{ fm/s}$$
Nuclear radius R = 1.2 A^{1/3}
 $T_F = 4R / V_F$
R = 3.3 fm
A = 20
R = 5.6 fm
A = 100
 $T_F \sim 3x10^{-22} \text{ s}$
A = 20
 $T_F \sim 6x10^{-22} \text{ s}$
A = 100
2. Rotation $\hbar\omega = \frac{1}{2}E\gamma (I \rightarrow I-2)$
 $\hbar = 6.6x10^{-16} \text{ eV s}$
 $T_R = 2\pi / \omega$
 $T_R \sim 4x10^{-21} \text{ s}$
 $T_R \sim 4x10^{-21} \text{ s}$
A = 20
 $T_R \sim 1x10^{-20} \text{ s}$
A = 100
 $T_R \sim T_F \sim 11$
 $T_R \sim R$
Ratio $\sim R \sim A^{1/3}$

Finite size effects are also stronger in light nuclei.

Heavy nuclei provide many of the best examples of regular collective motion; e.g. SDBs to > 60 ħ.
 But ħω is larger for light nuclei.

What can we conclude from this?

- Collective and single-particle modes can perhaps be separated, but they will interact strongly!

e.g:

•Core polarization		
 Coriolis forces 	\rightarrow	backbending,
		modification of shell structure,
		quenching of pairing.
•Finite size effects	\rightarrow	band termination,
		blocking of collective excitations

Nevertheless, the collective/unified model has proven to be a very powerful and useful tool.

Next: Rotations

Observation of a Discrete-Line Superdeformed Band up to 60% in ¹⁵²Dy

Detour - Superdeformed Rotation e.g. ¹⁵²Dy

Superdeformed band: ~ 20 gammas in ~ 10^{-13} s $\sum E\gamma \sim 20$ MeV 1 eV = 1.6x10⁻¹⁹ J

$$\Rightarrow$$
 Power = (3.2x10⁻¹² J) / (10⁻¹³ s) = 32 W (!)

Rotational frequency $\hbar \omega \cong 500 \text{ keV}$ $\omega \cong 8 \times 10^{20} \text{ radians/s} \rightarrow \sim 10^{20} \text{ Hz}$ or 10^7 rotations in 10^{-13} s - same as number of days in 30,000 years!

Decay of ¹⁵²Dy SDB to ground state passes through a long-lived (86 ns) level

 \Rightarrow ~ 5x10¹² rotations \cong days since the big bang.

Symmetries of the Intrinsic Hamiltonian: Axial Symmetry, Reflection-symmetric

K = angular momentum projection on symmetry axis

²³⁸U

D. Ward et al.

Nucl. Phys. A600 (1996) 88

Signature quantum number α

$$J = 2n + \alpha$$

[404]7/2+

[541]1/2

Symmetries of the Intrinsic Hamiltonian: Axial Symmetry, Reflection-asymmetric

K = angular momentum projection on symmetry axis

NRC Report on Nuclear Physics, 1999, "The Core of the Matter...", p. 70

In a nucleus with octupole deformation, the center of mass and center of charge tend to separate, creating a non-zero electric dipole moment.

Figure 4-12 Systematics of moments of inertia for nuclei with $150 \le A \le 188$. The moments of inertia are obtained from the empirical energy levels in *Table of Isotopes* by Lederer *et al.*, 1967.

Note how the moments of inertia (MOI) are only about $\frac{1}{2}$ of the rigid body values. This is related to pairing; the odd and odd-odd nuclei have weaker pairing and larger MOI. On the other hand, the motion is not purely irrotational; the irrotational MOI are about $\frac{1}{10}$ the rigid value.

Bohr and Mottelson vol. 2 p.363

For animated pictures of shape vibrations, go to http://radware.phy.ornl.gov/movies.html

Figure 6-3 Quadrupole shape oscillations in a spheroidal nucleus. The upper part of the figure shows projections of the nuclear shape in directions perpendicular and parallel to the symmetry axis. The lower part of the figure shows the spectrum associated with excitations of one or two quanta.

Coulomb Excited by 209 Bi at E = 6 MeV/u "Unsafe Coulex" - some contribution from nuclear interactions No absolute B(E2)'s extracted

Spectroscopy in the Superdeformed Minimum of ²⁴⁰Pu

Pansegrau et al., Phys. Lett. 484B (2000) 1

