

Basis Construction for GRETINA

Mario Cromaz (LBNL)

Outline

- Basis Overview
 - description
 - file format
- Raw Basis
- Crosstalk Corrected Basis
 - response corrections
 - the superpulse method
- Some future needs

Signal Decomposition

- provides sub-segment position sensitivity
- digitized signal recorded from each segment contact and the central contact (37 signals/traces)
- observed signal fit against a linear combination of basis signals, best fit determines position
- basis signals are calculated, not measured (exhaustive measurement not practical)

Some Definitions

- interaction point:
 - a scattering point of the gamma ray in the Ge crystal where charge carriers are liberated
- net charge segment:
 - the segment pad(s) which collect non-zero charge
- net = 1,2,... event:
 - the number of segments for which net charge is deposited

Basis File

- file containing simulated signals for unit charge deposited on a (non-uniform) grid of points in the crystal
- two types:
 - raw basis ("basis raw.dat")
 - crosstalk corrected basis ("basis_xt.dat") file used for signal decomposition
- stored in computer memory for efficiency
- a customized basis is required for each of the 28 crystal in the GRETINA array
- constructing signal basis is a large undertaking
- important determines position resolution of the array impacting Doppler correction, P/T and efficiency

Format (1)

- in GRETINA, a basis is a file consisting of:
 - a header
 - a set of "basis" structs
 - a 4d lookup table
- header gives:
 - version of basis
 - number of basis points
 - size of lookup table (typ: srad=35,sphi=13 szz=22)
- the lookup table allows decomp algorithm quick access to individual basis point structures

256 byte header

list of basis point data structures (~200k points)

~1.7GB

4D lookup table

Format (2)

from gdecomp.h

- basis point consists of :
 - index of cylindrical coordinates used by decomposition algorithm (gives neighbors)
 - actual cartesian coordinate of point in crystal coordinates
 - a two-dimensional array of traces corresponding to signals generated by a unit charge at that point
 - limits on trace index to speed signal decomposition

Steps to Generate a Raw Basis

- generate electric fields, weighting potential for a given crystal geometry (A/B), voltage, impurity conc.
- generate a non-uniform grid of points within the crystal whose spacing is a function of the position sensitivity (avg. spacing ~1 mm, ~ 230,000 pts)
- for each point simulate the charge collected on each segment and central contact:
 - 50 samples (500 ns)
 - results in a file:"basis_raw.dat",

Basis Corrections

- raw simulated basis is not sufficient
- need to correct traces in basis file for:
 - -integral crosstalk
 - -differential crosstalk*
 - -shaping from preamp
 - -time offsets
- differential crosstalk very problematic as it mimics the induced signal in neighboring segments
- these parameters are not easily measured independently

example of position bifurcation in coincidence measurement

Calculating Response Corrections

- use average net=1 traces:
 - collect net = 1 data from ⁶⁰Co source, record average traces for each segment (70-90 GB)
 - simulate average traces using fields originally used to calculate the raw basis
 - apply a model of response corrections to simulated data and fit against measured traces
 - the set of these traces are referred to a superpulses

GRETINA quad mounted in scanning table for coincidence measurement

⁶⁰Co superpulse fits

- superpulses are a concatenation of the 36 traces from the segment and the central contact
 - below a net=1 superpulse from the front face of the detector, superimposed is a fit using the simulation with response corrections

Crosstalk Parameters Calc.

wedge

- only a subset of all possible crosstalk parameters are required
- program is flexible, can consider different sets of pairs
- figure to left shows parameters fit for current GRETINA basis
- standard fits involve 669 parameters / crystal

- segment of interest
- ____ integral crosstalk
- differential crosstalk

xtalk pars in.txt

- each crystal has a unique crosstalk file
- text file containing info on detector response parameters
- divided into sections based on parameter type
- ubiquitous; used in basis construction, preprocessor and signal decomposition

```
669 parameter values:
                              from pars669.txt
delay0:
 19.64 21.04 18.01 19.22 19.55 19.14
 19.14 21.78 18.40 18.45 21.18 18.48
 19.59 20.96 18.80 19.71 20.81 20.40
 21.80 23.19 19.31 21.80 19.88 19.88
 21.98 22.77 19.20 19.81 19.16 20.45
 17.63 18.75 17.52 17.97 16.68 17.37
delay1:
 0.28 0.26 1.51 0.68 0.68 1.07
 1.47 0.17 1.58 1.32 -0.16 1.21
 0.76 -0.12 1.33 0.85 0.16 0.03
 -0.28 -0.58 0.37 -0.57 0.06 0.19
 -1.15 -0.96 -0.11 -0.55 0.32 -0.14
 2.00 1.50 1.92 1.46 3.48 2.23
dxt 0:
dxt 1: 0: 0.510
dxt 2: 1: 0.568
dxt 3: 2: 0.516
dxt 4: 3: 0.645
dxt 5: 0: 0.487 4: 0.634
dxt 6: 0: 0.795 1: 0.049 5: 0.027
dxt 7: 0: 0.054 1: 0.605 2: 0.096 6: 0.198
dxt 8: 1: 0.165 2: 0.945 3: 0.071 7: 0.261
dxt 9: 2: 0.146 3: 0.996 4: 0.164 8: 0.262
dxt 10: 3: 0.141 4: 0.980 5: 0.117 9: 0.299
dxt 11: 0: 0.009 4: 0.144 5: 0.960 6: 0.158 10: 0.290
dxt 12: 0: 0.313 1: -0.047 5: 0.005 6: 0.994 7: -0.001 11: 0.036
dxt 13: 0: -0.074 1: 0.323 2: -0.022 6: 0.095 7: 0.460 8: 0.002
     12: 0.189
dxt 14: 1: -0.051 2: 0.284 3: -0.021 7: -0.011 8: 0.880 9: 0.026
     13: 0.240
```


Workflow

Current Status

- have a mechanism to generate raw and response (crosstalk) corrected basis for GRETINA
- completed first iteration of basis construction - meets initial project requirements
- basis vary in quality significantly
- basis construction involves a number of disparate programs, time consuming

```
q4a4 -> basis -> basis raw.dat
              -> basis xt.dat
              -> xtalk pars in.txt
     -> co60 -> Q4Apr10001.dat
              -> Q4Apr10001.eb
              -> co60.eb
              -> expt_sp.spn
     -> sim
              -> sim sp.spno
              -> (config files)
q4a8 -> ...
q4b7 -> ...
q4b7 -> ...
```


Future Needs

- a more automated approach to basis creation and crosstalk parameter calculation
 - to support basis testing
 - to validate crosstalk, response model
- a mechanism to fix detector response fit parameters
 - integral crosstalk, shaping time can be determined independently, may be better able to determine differential crosstalk

- remove hard coded 500 ns (50 sample) trace size
- a mechanism to embed / track parameters used in basis into file itself (or the basis and all it's auxiliary files should be a true database ... far future)

Thank you!